vse-knigi.com » Книги » Научные и научно-популярные книги » Физика » Ричард Фейнман - 6. Электродинамика

Ричард Фейнман - 6. Электродинамика

Читать книгу Ричард Фейнман - 6. Электродинамика, Жанр: Физика. Читайте книги онлайн, полностью, бесплатно, без регистрации на ТОП-сайте Vse-Knigi.com
Ричард Фейнман - 6. Электродинамика

Выставляйте рейтинг книги

Название: 6. Электродинамика
ISBN: нет данных
Год: неизвестен
Дата добавления: 20 август 2019
Количество просмотров: 249
Возрастные ограничения: Обратите внимание! Книга может включать контент, предназначенный только для лиц старше 18 лет.
Читать книгу
1 ... 33 34 35 36 37 ВПЕРЕД
Перейти на страницу:

Это уравнение становится более понятным, если переписать его в виде

Векторный потенциал А — это такое же выражение, но с до­бавочным множителем v/c2:

В выражении (21.39) со всей ясностью предстает перед вами начало преобразований Лоренца. Если бы заряд находился в начале координат в своей собственной системе покоя, то его потенциал имел бы вид

А мы смотрим на него из движущейся системы координат, и нам кажется, что координаты следует преобразовать с помощью формул

Это обычное преобразование Лоренца. Лоренц вывел его тем же самым способом, каким пользовались и мы.

Но что можно сказать о добавочном множителе 1/Ц(1-v2/с2), который появился перед дробью в (21.39)? И кроме того, как появляется векторный потенциал А, если он в системе покоя частицы повсюду равен нулю? Мы вскоре покажем, что А и j вместе составляют четырехвектор, подобно импульсу р и полной энергии U частицы. Добавка 1/Ц(1—v2/c2) в (21.39)—это тот самый множитель, который появляется всегда, когда пре­образуют компоненты четырехвектора, так же как плотность заряда r преобразуется в r/Ц(1-v2/c2). Собственно из формул (21.4) и (21.5) почти очевидно, что А и j суть компоненты одного четырехвектора, потому что в гл. 13 (вып. 5) уже было пока­зано, что j и r — компоненты четырехвектора.

Позднее мы более подробно разберем относительность в электродинамике; здесь мы хотели только показать, как естест­венно уравнения Максвелла приводят к преобразованиям Лоренца. Поэтому не надо удивляться, узнав, что законы электричества и магнетизма уже вполне пригодны и для теории относительности Эйнштейна. Их не нужно даже как-то особо подгонять, как это приходилось делать с ньютоновой механи­кой.

* С обратным знаком. См. дальше.— Прим. ред.

*Формула была выведена Р. Фейнманом в 1950 г. и приводится иног­да в лекциях как удобный способ расчета синхротронного излучения.

1 ... 33 34 35 36 37 ВПЕРЕД
Перейти на страницу:
Комментарии (0)